
Journal of Analysis and Applications
Vol. 22 (2024), No.2, pp.81-106
ISSN: 0972-5954
© SAS International Publications

URL : www.sasip.net

Assembly procedure for elementary
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Abstract. The study of railway dynamics remains an active and fer-
tile field of research, given the technological evolution of this trans-
port system. Several modeling methods have been developed to ex-
plore the dynamic interactions of a train-rail-bridge system, and these
numerical models enable optimization of bridge design, especially for
high-speed lines. In this perspective, this work joins this huge mod-
eling project by proposing a procedure for assembling the elemen-
tary matrices of a dynamic system composed of a train, a rail and
a bridge, in order to obtain the global differential equations of the
system. The model studied consists of a moving part, the vehicle,
modeled by a mass-spring-damper system, and a fixed part, the rail
and bridge deck, modeled by two Bernoulli beams. The elements
to be assembled are not identical, which increases the complexity of
their assembly, as the position of the vehicle wheel changes as a func-
tion of time and passes from one element to another, creating loaded
and unloaded elements.

The dynamic equations were solved using the Newmark Beta
numerical method. The model developed was subjected to a valida-
tion process based on a comparison of the dynamic responses of the
bridge and vehicle obtained by the present study and those presented
by previous studies.
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1. Introduction and Preliminaries

Numerical simulation has become an effective tool for dynamic pre-

diction of vehicle, rail and bridge behavior in the railway field [8]. Several

models have been developed in various studies, including [3], [7], [14], which

presented the vehicle-rail-bridge in two subsystems namely the vehicle and

the bridge-rail. The vehicle-rail-bridge system was considered as a single

coupled system, the dynamic contact forces between train and rail being

internal forces [6], [15].

Dynamic responses determination of a railway system involves 3 crit-

ical steps requiring high accuracy respectively:

- Modeling and elaboration of elementary differential equations,

- Assembling elementary matrices to establish equations of overall sys-

tem,

- Selecting a numerical method for solving equations, and consequently

for predicting the dynamic behavior of the system studied.

Several methods have been used to determine motion equations, Lou

and Zeng [9] reported the motion equations of the vehicle-rail-bridge sys-

tem using Hamilton’s principle. D’Alembert’s principle was used [20] to

establish set of differential equations.

The principle of the stationary value of total potential energy com-

bined with the finite element method has been adopted in current study to

establish motion equations of the system.

The dynamic interaction model of vehicle-rail-bridge system has evolved

over time from a simple restricted model of constant force in motion to axle

loads. Several studies have adopted the restricted model [2], [13], which

sought only to predict axle response without taking accounttrack irregular-
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ities. The moving and suspended mass model remained simple after moving

load and allowed us to study the effect of vehicle inertia on axle response

[1], [19].

Other researchers have modeled train by two rigid masses connected

by spring-damper suspension systems [4], [18]. The moving systems provide

more realistic modeling and behavior for the interaction issue. The system

includes a first mass which represents the vehicle body and the second

represents the wheel mass. This model has 2 DOFs (degrees of freedom)

respectively the vertical displacements of body and the wheel. It has been

modified to incorporate the effect of pitching and become a 4 DOFs model

[17]. The 4 DOFs are the two wheels vertical displacements, the body

vertical displacement and the body rotation.

[16] developed a 10 DOFs model, the train being modeled by a body,

two bogies and 4 wheels, connected respectively by a primary and a sec-

ondary suspension represented by spring-damper systems. This model has

10 DOFs and allows the study of bridge dynamic response and passengers

comfort [10], [12]. [21] presented a more complex 115 DOFs train model

including vertical and transverse connections between car bodies and two

suspension layers.

However, the preceding models do not present a suitable assembly

process enabling the transition from elementary matrices to global matri-

ces. This article therefore presents a detailed assembly procedure for the

elementary matrices of a vehicle-train-bridge railway system.

The particularity of the procedure developed is that it allows the as-

sembly of non-identical matrices composed of discrete masses representing

the system of vehicle and continuous masses representing the system of rail

and the bridge. The ballast is modeled by damping springs, and its mass
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is integrated into the mass of the bridge, which is assumed to be simply

supported. The two systems are coupled, and contact forces are considered

as internal forces.

The rail-bridge sub-structure is divided into 10 elements of length l.

The elementary matrices of the sub-system are established using the finite

element method combined with the potential energy principle. The pro-

posed assembly method consists of assembling the mass, stiffness, damping

and force vector matrices of the sub-structure without any vehicle action.

Once the vehicle’s position has been determined, the elements rep-

resenting wheel-rail interaction will be introduced into the substructure

matrices. By adding the vehicle elements, we obtain the global matrices of

the system under study.

The numerical solutions of the motion equations are obtained by di-

rect step-by-step integration in the time domain using the Newmark Beta

method. The results are presented in Figures 6, 8 and 10, and show excel-

lent agreement when compared with the dynamic responses calculated by

the modal analysis method presented in [1], Figures 5, 7 and 9

2. Equations of motion for “Tarin-track-bridge”
interaction

2.1. The theoretical model

The vehicle rail and bridge are considered a complete system in current

investigation. The vehicle is modeled by two rigid respective masses, m1

body mass and me wheel mass. The two are connected by a spring-damper

system (k1 , c1 ), q1 and qe present vertical displacements of the vehicle

which is running with a velocity v(t) and an acceleration a(t) in longitudinal

direction. Therefore, total number of DOFs is two, since vertical movement
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of wheel is limited by rail, the number of independent DOFs becomes 1

noted {q1}.

Rail and bridge are modeled by two Euler-Bernoulli beams of finite

length simply supported on bridge piers. The two are connected by a

continuous layer of damper springs (krp , crp).

Based on the finite element method, rail and bridge are divided into

10 elements of length l, the damping of the rail is neglected, however a

linear viscous damping cp is considered for the bridge, mb and mr repre-

sent respectively the mass per unit length for bridge and rail, Er and Ir

represent Young’s modulus and constant moment of inertia of rail, Ep and

Ip represent Young’s modulus and constant moment of inertia of bridge.

When longitudinal displacement is neglected of the two beams, each

beam element has 4 DOFs, vertical displacement and rotation in every

extremity. Displacement vectors respectively for rail and bridge are

{q2 , q3 , q4 , q5} and {q6 , q7 , q8 , q9}. Therefore vehicle-rail-bridge element

become 9 DOFs {q1 , q2 , q3 , q4 , q5 , q6 , q7 , q8 , q9}.

Figure 1: Model of Vehicle-Track-Bridge Interaction System
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Figure 2: Model of Vehicle-Track-Bridge Interaction Element

At a fixed time t, the wheel of mass me is located at a distance s from

rail left end. We note that: x=v × t and j is the number of the element on

which the wheel acts, with j = E (
x

l
) + 1, we specify that E(

x

l
) the integer

part of the number, v is the wheel speed. In this case s = x − (j − 1 ) × l .

Taking into consideration track irregularities causing vertical devia-

tion along the rail from its initially horizontal profile, let r(s) be the value

of this deviation at the point of contact with wheel.

We note that N (s) represents the cubic hermite interplation functions

and N (s)
T

represents the transpose of N (s) where

N(s) = [NANBNCND] (1)

NA = 1− 3
(s
l

)2

+ 2
(s
l

)3

(2)

NB = s

[
1− 2

(s
l

)
+
(s
l

)2
]

(3)

NC=3
(s
l

)2

− 2
(s
l

)3

(4)

ND= s

[(s
l

)2

−
(s
l

)]
(5)

2.2 Formulation of motion equations

Adopting the method based on total potential energy principle of the

stationary value combined with the finite element method, described in
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detail in the Lou and al. [1], we obtain the motion equations of the vehicle-

rail bridge element in matrix form as follows:

MeQe+CeQ̇e+KeQ̈e=Fe (6)

with:

Me =

[m11 ] [0 ] [0 ]
{0} [mrr ] [0 ]
{0} [0 ] [mpp ]


Ke =

 [k11 ] [k1r ] [0 ]
{kr1} [krr ] [krp ]
{0} [kpr ] [kpp ]



Ce =

 [c11 ] [c1r ] [0 ]
{cr1} [crr ] [crp ]
{0} [cpr ] [cpp ]


Q̈e=

 q̈1

{q̈r}
{q̈p}

 , Q̇e=

 q̇1

{q̇r}
{q̇p}


Qe=

 q1

{qr}
{qp}

 ,Fe=

 f1
{fr}
{fp}


Vector of nodal rail displacement:

{qr}=


q2

q3

q4

q5


Vector of nodal bridge displacement:

{qp}=


q6

q7

q8

q9
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Mass Matrix component:

[m11 ]=m1

[mrr ]=meN (s)
T

N (s) +mr

∫ l

0

N (x )
T

N (x ) dx

[mpp ]=mp

∫ l

0

N (x )
T

N (x ) dx

Damping Matrix component:

[c11 ]=c1

{cr1}= {c1r}= −c1 N (s)

[crp] = [cpr] = −crp
∫ l

0

N (x )
T

N (x) dx

[cpp ]= (crp+cp)

∫ l

0

N (x )
T

N (x ) dx

[crr ]=crp

∫ l

0

N (x )
T

N (x ) dx+c1 N (s)
T

N (s)+2vmeN (s)
T

N ′ (s)

Stiffness Matrix component:

[k11 ]=k1

[k1r ]=−k1 N (s)−c1 vN ′ (s)

{kr1}=−k1 N (s)
T

[krp ]= [kpr ] =−k rp

∫ l

0

N (x )
T

N (x ) dx

[kpp ]=EpIp

∫ l

0

N ′′ (x )
T

N ′′ (x ) dx+krp

∫ l

0

N (x )
T

N (x ) dx

[krr ]=Er Ir

∫ l

0

N ′′ (x )
T

N ′′ (x ) dx+krp

∫ l

0

N (x )
T

N (x ) dx+k1 N (s)
T

N (s)

+(c1 v+mea)N (s)
T

N ′ (s) +mev2 N (s)
T

N ′′ (s)

Force Vector components:

f1 =k1 r (s) +c1 vr ′ (s)

{fr}= [(m1 + me) g−k1 r (s)−c1 vr
′
(s)−me(ar

′
(s) +v2 r ′′(s))]N (s)

T
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{fp}=


0
0
0
0


We note that:

[A]=

∫ l

0

N (x )
T

N (x ) dx =



13l

35

11l2

210

9l

70

−13l2

420
11l2

210

l3

105

13l2

420
− l3

140
9l

70

13l2

420

13l

35
−11l2

210
−13l2

420
− l3

140

11l2

210

l3

105



[B ]=

∫ l

0

N ′′ (x )
T

N ′′ (x ) dx =



12

l3

6

l2

−12

l3

6

l2

6

l2

4

l
− 6

l2

2

l−12

l3

6

l2

12

l3
− 6

l2

6

l2

2

l

−6

l2

4

l


2.3. Proposed assembly procedure

The proposed method consists of assembling stiffness, mass and damp-

ing matrices, as the force vector of the system comprising rail and bridge,

without any vehicle action.

2.3.1. Bridge-rail elementary interaction matrix

To establish the elementary matrices of the rail-bridge element without

any railway load, one proceeds as follows:

- Eliminate the first row and column of each elementary matrix Me ,

Ke , Ce defined above

- Eliminate the first component of each vector Qe Q̇e , Q̈e and force

vector Fe
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- Annul the elements defining the rail load: m1 =me=0 , k1 =0 and

c1 =0

The mass, stiffness and damping matrices as well as the force vector

are defining interactions of bridge-rail system for a single element:

Elementary Mass Matrix [Mrbe ]

[Mrbe ] =

[
[mrr

′] [0 ]
[0 ] [mpp ]

]
[mrr ′ ] and [mpp ] blocks are defined as follows

[mrr ′ ] =mr [A]

[mpp ] =mp [A]

Elementary Stiffness Matrix [Krbe ]

[Krbe ] =

[
[krr
′] [krp ]

[kpr ] [kpp ]

]
[krr ′ ] , [krp ] and [kpp ] blocks are defined as follows:

[krp ] =[kpr ] = −k rp [A]

[krr ′ ] =Er Ir [B ] +krp [A]

[kpp ] =EpIp [B ] +krp [A]

Elementary Damping Matrix [Crbe ]

[Crbe ] =

[
[crr
′] [crp ]

[cpr ] [cpp ]

]
[crr ′ ] , [cpr ] and [cpp ] blocks are defined as follows:

[crr ′ ] =crp [A]

[crp ] = [cpr ] =−crp [A]

[cpp ] = (crp+cp) [A]



Assembly procedure for elementary matrices... 91

Elementary Force Vector:

{frbe}=


0
.
.
0


the matrices [Mrbe ],[Krbe ] and [Crbe ] are square matrices of size 8 × 8 the

force vector {frbe} is of size 8 × 1

2.3.2. Assembly of elementary matrix into global bridge-

rail system matrix

Bridge and rail are decomposed into 10 elements (E) of equal length

l, corresponding to 22 nodes. Each node has 2 DOFs refer to figure 3,

resulting in a total of 44 DOFs:

Figure 3: Rail-Bridge structure meshing

The mesh is defined by the following connectivity:
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Table 1: Connectivity table

Elements Elements nodes

1 [1 2 12 13 ]

2 [2 3 13 14 ]

3 [3 4 14 15 ]

4 [4 5 15 16 ]

5 [5 6 16 17 ]

6 [6 7 17 18 ]

7 [7 8 18 19 ]

8 [8 9 19 20 ]

9 [9 10 20 21 ]

10 [10 11 21 22 ]

The assembly technique requires the elementary localization table of

the degrees of freedom associated with each mesh finite element. This table

is composed of columns corresponding to the elements connectivity vectors,

and rows representing the mesh element degrees of freedom.

Table 2(A): Localization of degrees of freedom

i CV 1 (i) CV 2 (i) CV 3 (i) CV 4 (i) CV 5 (i) CV 6 (i)

1 1 3 5 7 9 11

2 2 4 6 8 10 12

3 3 5 7 9 11 13

4 4 6 8 10 12 14

5 23 25 27 29 31 33

6 24 26 28 30 32 34

7 25 27 29 31 33 35

8 26 28 30 32 34 36
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Table 2(B): Localization of degrees of freedom

i CV 7 (i) CV 8 (i) CV 9 (i) CV 10 (i)

1 13 15 17 19

2 14 16 18 20

3 15 17 19 21

4 16 18 20 22

5 35 37 39 41

6 36 38 40 42

7 37 39 41 43

8 38 40 42 44

The assembly function is defined as follows:

For all (i, j) ∈
[
1 2 3 4 5 6 7 8

]2{
G (CV p (i) ,CV p (j)) = g (i, j) p=1

G (CV p (i) ,CV p (j)) = G (CV p (i) ,CV p (j)) +g (i, j) p 6= 1

While:

- g is the elementary matrix to be assembled and g(i,j) is the element

of the ith row and jth column

- G is the global matrix of the system and G(I, J) is the element of the

Ith row and the Jth column, such that : I= CVp(i) , J= CVp(j)

- CV p is the connectivity vector of the element p

Global matrices of the bridge-rail system [Crbg ], [Krbg ] and [Mrbg ] are

obtained respectively by assembling the elementary matrices [Crbe ], [Krbe ],

[Mrbe ] using the function defined above.

{frbg} represents the force vector of the rail-bridge system where all

elements are zero.

The global mass, stiffness and damping matrix are 44 x 44 in size, and

global displacement vector and force vector are 44 x 1 in size.
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2.3.3. Matrix of “vehicle-rail” interaction

Ng (s) is of size 1 ×44 and all its elements are null except those which

correspond to rail element DOF on which the wheel operates

Ng (s) =
[
0 0 0 NA NB Nc ND 0 0 0

]
Mass matrix. Consider [Mrv ] the mass matrix induced by the moving

mass on the rail, with size 44 x 44, s denotes the local coordinate measured

from the left node of a beam element.

[Mrv ] =me×Ng (s)
T ×Ng (s)

Stiffness matrix. Consider [Krv] , [k1r] and {kr1} are the stiffness matri-

ces induced by wheel displacement on rail, they are respectively of order

44 × 44 , 1× 44 and 44 × 1 with:

[Krv ] = k1 Ng (s)
T

Ng (s) + (c1 v + mea)Ng (s)
T

N ′g (s) +mev2 Ng (s)
T

N ′′g (s)

[k1r ] =−k1 Ng (s)− c1 vN ′g (s)

{kr1}=−k1 Ng (s)
T

Damping matrix. The matrices [Crv] , [c1r] and {cr1} are of orders 44×

44 ,1×44 and 44 × 1 respectively and represent overall damping matrices

induced by wheel on rail.

[Crv ] =c1 Ng (s)
T

N (s)+2vmeNg(s)
T

N ′g(s)

[c1r ] = −c1 Ng (s)

{cr1}= −c1 Ng (s)

Force vector. {frv} represent the load force vector induced by the wheel

acting on the rail, it is of order 44 × 1 :

{frv}= [(m1 +me) g−k1 r (s)−c1 vr′ (s)−me

(
ar ′ (s) +v2 r ′′ (s)

)
]Ng (s)

T
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2.3.4. Construction of global matrices for vehicle-rail-bridge

Global matrices of the system composed of 3 elements: vehicle, rail

and bridge are written as follows:

Mass Matrix:

Mg=

[
[m11 ] [0 ]
{0} [Mrbg ] + [Mrv ]

]
Damping Matrix:

Cg=

[
[c11 ] [c1r ]
{cr1} [Crbg ] + [Crv ]

]
Stiffness Matrix:

Kg=

[
[k11 ] [k1r ]
{kr1} [Krbg ] + [Krv ]

]
Force Vector:

Fg=

{
f1

{frv}+ {frbg}

}
The dynamic response vectors are respectively:

Displacement:

Qg=

 q1

{qr}
{qp}


Velocity:

Q̇g=

 q̇1

{q̇r}
{q̇p}


Acceleration:

Q̈g=

 q̈1

{q̈r}
{q̈p}


It should be noted that:

- {q̈r}, {q̇r} and {qr} are of order 22 × 1 . (The rail’s degrees of free-

dom)
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- {q̈p}, {q̇p} and {qp} are of order 22 × 1. (The bridge’s degrees of

freedom)

- {frv} is of order 44× 1

- {fp} is a null vector of ordre 44× 1

The assembly process used allows genering the global motion equation

for the entire vehicle-rail-bridge interaction system follows:

MgQ̈g+KgQg+CgQ̇g=Fg (7)

3. Dynamic analysis using Newmark beta method

Several numerical integration methods in the time domain [5] have

been reported to solve this type of equation. Three main requirements

must be addressed in a numerical solution procedure, namely:

- Convergence: numerical solution approaches the exact solution as the

time step decreases.

- Accuracy: the numerical solution presents result close enough to exact

solution.

- Stability: the solution must be stable even in presence of errors.

The Newmark beta method remains one of the most popular explicit

methods used in structures dynamic analysis. It is applicable to linear dif-

ferential systems with time-dependent mass, stiffness and damping matrices

[11].

In addition to β parameter, it contains a δ parameter with the value
1

2
. The Newmark equation can be written in incremental quantities for a
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constant time step ∆t as follows:

∆ui=u̇i∆t+
1

2
üi∆t2+β∆üi∆t2 (8)

∆u̇i=üi∆t + δ∆üi∆t (9)

∆u = u (t + ∆t)−u (t) (10)

∆u̇=u̇ (t + ∆t)−u̇ (t) (11)

∆ü=

(
∆u−u̇t∆t−1

2
üt∆t2

)
/β∆t2 (12)

Substituting (12) into (9)

∆u̇=
1

2β∆t
∆u− 1

2β
u̇t+

(
1− 1

4β

)
üt∆t2 (13)

Considering the equation of motion at time t and time t+ ∆t.

M üt+C u̇t+K ut=Ft (14)

M üt+∆t+C u̇t+∆t+K ut+∆t=Ft+∆t (15)

Subtracting (14) from (15):

M∆ü+ C∆u̇+K∆u = ∆F (16)

with

∆ü=üt+∆t−üt (17)

∆u̇=u̇t+∆t−u̇t (18)

∆u=ut+∆t−ut (19)

The values of M,CandK in (16) are calculated at time t, assuming

that remain constant during ∆t.

Substituting (12) and (13) into (16) give (20), which calculates dis-

placement ∆u:

K̂t∆u=∆̂F (20)
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where the effective stiffness K̂t and incremental force ∆̂F are provided

respectively

K̂t=Kt+
1

β∆t2
Mt+

1

2β∆t
Ct (21)

∆̂F=∆F+
1

β∆t
Mt u̇t+

1

2β
Ct u̇t+

1

2β
Mt üt− Ct∆t

(
1− 1

4β

)
üt (22)

The value of β parameter range between 1/6 and 1/2.

Figure 4: Flowchart for equation resolution process

4. Validation of proposed procedure

The assembly procedure used to obtain motion equations of vehicle-

rail-bridge interaction system and the associated computer program are

verified through the study in this section. Differential equations were solved

by Newmark-β method with a time step ∆t = 0.005. The computational

program was developed on “MATLAB © R2021b, The MathWorks, Inc.”
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The example investigated to validate the proposed procedure consists

of a simple supported Bernoulli beam of length L = 30 m, travelling with

a single-axle vehicle at constant speed v = 27.78 m/s. The beam surface is

assumed to be smooth r (s) =0 . Vehicle characteristics, bridge and rail are

summarized in Table 2 [8].

Table 2: System Vehicle-Rail-Bridge Parameters

Parameters Value Unit

Vehicle

m1 5750 Kg

me 0 Kg

c1 0 Ns/m

k1 1 .595 10 6 N/m

Rail

mr 10−7 Kg/m

Ir 10−10 m4

Er 2 .06 10 11 Pa

krp 10 13 N/m

crp 0 Ns/m

Bridge

mb 2 .303 10 3 Kg/m

Ib 2 .90 m4

Eb 2 .87 10 9 Pa

cp 0 Ns/m
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Figure 5: Time history of vertical displacement of midpoint of bridge

computed by modal analysis method [8]

Figure 6: Time history of vertical displacement of midpoint of bridge

calculated by current method

Figure 7: Time history of vertical acceleration of midpoint of bridge

computed by analysis method [8]
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Figure 8: Time history of vertical acceleration of midpoint of bridge

calculated by current method

Figure 9: Time history of vertical acceleration of carbody computed by

modal analysis method [1]
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Figure 10: Time history of vertical acceleration of carbody calculated by

current method

Figures 6 and 8 show respective displacements and accelerations re-

spectively in bridge middle, while Figure 10 highlights accelerations in ve-

hicle. The 3 curves are clearly obtained using current method. Figures 5,

7 and 9 report dynamic responses of railway system obtained using modal

analysis method (MAM) presented in [8].

Calculated results adequately corroborate with those presented in [8],

demonstrating validity and reliability of proposed method.

We note that the proposed approach is efficient and not expensive in

terms of time. However, it is restricted to bridges of limited length, as it

allows the assembly of only 10 elements of the rail-bridge sub-structure.

In fact, in the finite element method, the smaller the elementary length,

the greater the number of meshes, which also improves the accuracy of the

calculations.

5. Conlcusion

Based on the energy approach and finite element method, motion

equations of vehicle-rail-bridge system element have been established. The

model presented divides the bridge and rail into 10 elements of equal length

l. The vehicle is modeled by a suspended mass moving along the 10 elements
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at a constant speed v. The elements to be assembled are not identical which

increases the complexity of their assembly. In fact, there are two types of

elements to be assembled: one with a vehicle and 9 others without vehicle.

This study elaborates a procedure for assembling elementary matri-

ces into the system global equations under study. These are then solved

using the explicit Newmark beta numerical method to obtain the dynamic

responses of overall vehicle-rail-bridge system.

The assembly procedure developed in this investigation is efficient, not

expensive in terms of time and has been validated by comparing its results

with those obtained by the method (MAM) presented in [8].

The method presented remains however restricted to bridges of limited

length, since it only defines assembly of 10 elements. A more advanced

technique for assembling n elements of elementary system is currently under

investigation.

Acknowledgement. The authors would like to express their sincere grat-
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